ECool Corrector Voltages

Local application
Fri, Dec 9, 2005

ECool supports about 256 corrector power supplies whose currents are already being
monitored by the control system. From time to time, there have been found to be shorts that
do not cause the measured currents to change, since the supplies are current regulated. An
effort to monitor the voltages of these supplies should reveal such shorts. The interface to the
embedded controller is done via ethernet using a UDP-based protocol called CEC (Compact
Ethernet Communication) that was designed for the purpose by Greg Saewert and Brian
Kramper. This note describes a local application called cEcv that can access these voltages
and do the required processing.

Since the voltages may vary as the power supply regulates the current, it is useful to monitor
the resistance (voltage / current) instead. So in addition to using CEC to retrieve the voltage
data, the LA should compute the resistances of each supply, then letting the normal alarm
system compare them against the expected values for each.

The LA periodically sends a request message (10 bytes) to ask for the voltage reading of up to
128 power supplies. (There are two banks of 128 supplies.) The reply to this request is a 10-
byte header followed by an array of data words, each of which has the raw data format:

Raw value Voltage reading

0XFFFF +10.24
0x8000 0
0x0000 -10.24

Turn these values into a ordinary integers for computation by toggling the high bit.

LA parameters for CECV:

Prompt Size Meaning

ENABLE B 2 Usual enable Bit#

PERIOD 2 Data collection period in 15 Hz cycles

MSG TYPE 2 Message type# in CEC protocol

FIRST 2 Initial element in request

TARG IP 4 Embedded controller IP address

RESULT C 2 Target Chan# for receiving resistance readings
NCHANS 2 Number channels

CURRENT C 2 Local Chan# base for currents

The period must allow time for the reply data to be returned. If the reply is not returned
within the specified period, it is considered missing. There should be some means of
indicating that such failures in communication are occurring. It may be useful to measure the
time from request to reply as an aid in setting a suitable period.

The message type# is 0 for analog readings, but 2 is defined to be used for status words.

The initial element is probably 0. The number of elements to specify in the request message is
the same as the number of channels parameter. The result channel# specifies where the
computed resistance values will be stored. This will allow monitoring them via the usual
alarm scan support.

ECool Corrector Voltages p. 2

The two nodes that support 128 corrector power supplies each are 058a and 058c. The full
scale for the current readings are 1 amp, except for some that use 2 amps. The current device
names end in “I1”. To define devices for the resistances, we could use names ending in “R”.
All corrector power supply voltages use the same scale factors. We can then use integer
arithmetic to compute the resistance, storing it as an integer result. (An alternative is to store
the results into raw floating point channels.)

The order of the retrieved voltages may not match the order of the current readings, in which
case the LA must be able to find, for any voltage value, the correct current value to use to get
the proper resistance value.

The computation of resistance values can use integer arithmetic. For any analog channel, two
constants are used for deriving the engineering units via this simple linear formula:

eng = raw * fs / 32768 + off,

Where raw is the 16-bit data word, £s is the full scale, and of £ is the offset. Assume
for this program that the offset is always zero. The current channel fullscale can be Ifs, either
1 or 2 amperes, and the voltage fullscale can be Vfs, which is 10.24 volts. Let the raw readings
be Iraw and Vraw. So we have:

V = Vraw * Vfs / 32768
I = Iraw * Ifs / 32768
R = Rraw * Rfs / 32768
R=V /I

Note that vEs = 10.24, and Ifs may be 1 or 2.

Assume that Rfs = 10.24, meaning that we can get resistance results of +10 ohms. (Of
course, resistance should always be positive, but if Iraw is near zero....)

What we really want is
Rraw = R * 32768 / Rfs = (Vraw * Vfs) / (Iraw * Ifs) * 32768 / Rfs

For the case of Ifs =1, assume that Rfs = 10.24, so we have Rraw = Vraw * 32768 / Iraw
For the case of Ifs =2, assume Rfs = 5.12, so we also have Rraw = Vraw * 32768 / Iraw
This scheme allows using the same formula to derive Rraw for both cases. But it limits the
range of resistance for the Ifs =2 case to barely more than 5 ohms. If this is not adequate, so
that we need to preserve a 10 ohm range for the result, then use Rfs = 20.48 and 10.24. This

would change the formula to Rraw = Vraw * 16384 / Iraw.

To avoid divide overflow, we must have vraw < Iraw for the first formulation (Rfs = 10.24,
5.12), but we must have vraw < (Iraw * 2) for the second (Rfs = 20.48, 10.24).

